
Lekashri S. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.45-48

www.ijera.com 45|P a g e

Optimization of Test Pattern Using Genetic Algorithm for Testing

SRAM

Lekashri S
PhD Scholar, Anna University, Chennai, Tamil Nadu, India

ABSTRACT
An optimization of test pattern for testing of a Static Random Access Memory (SRAM) using genetic algorithm

interconnects presented here is a method that associates a turn on inputs to numerous nets, which gives rise to

test vectors to determine stuck-at, open, and bridging faults. This set up gives us privilege in reducing

unnecessary composition that reduces the testing time for application-dependent testing for coverage of faults.

This optimized test pattern is used as a test source for testing a circuit and identifying the faults in the circuit.

The faults which are covered in are stuck at open and bridging faults. Genetic algorithm reduces the redundancy

and optimizes the test pattern which results in reduced testing time and power consumption.

Keywords: Test pattern generator (TPG), Genetic Algorithm (GA), Linear feedback shift register (LFSR) Build

in self-test (BIST), Circuit under test (CUT), Output response analyzer (ORA).

I. INTRODUCTION

Built in Self-Test (BIST) is an emerging

technique for testing complex VLSI systems. To test

a design by using a BIST methodology, the design

has to be modified (enhanced) in such a way that part

of the circuit is used to test the design itself.

Therefore, BIST is defined as a Design for testability

(DFT) technique in which testing is accomplished

through built-in hardware components. A general

BIST is shown. It consists of a test source block, the

Circuit under test (CUT), a test response analysis

block and a test controller block, which manages the

application of the tests. In a classical BIST scheme,

the test source consists of a special kind of register,

test pattern generator (TPG), which generates on-chip

test patterns. Recently, a new hybrid BIST approach

has been proposed. It enhances the design with a read

only memory (ROM) for storing some deterministic

test patterns. These stored test patterns are used to

capture faults that cannot be detected by the test

patterns generated by the on-chip TPG.

Figure 1: BIST Architecture

II. EXISTING MODEL

Application-dependent testing of a SRAM-

based FPGA interconnect is been proposed. The

novelty of this comprehensive method is that it

connects an activating input to multiple nets, thus

generating a compact set of activating test vectors and

requiring a reduced numbers of configurations. The

faults covered in this technique include all possible

stuck-at, open, and pair wise bridging faults.

Detection is not based on physical information (such

as layout) of the FPGA interconnect; in this latter

case, the possible adjacencies could be found and the

number of pair wise bridging faults could be reduced.

However, to allow a fair comparison with existing

works logic simulation is therefore employed also in

this paper; therefore, all possible stuck-at, open, and

pair wise bridging faults are considered and detected

by the proposed approach. So, for detecting the faults

at the primary outputs, the induction fault detection

method presented in is adopted. This is lower than a

previous comprehensive method as well as by

combining different methods. The existing method

has a computational algorithm execution with L is the

number of LUTs in the design. The activating input

vectors required to sensitize the faults in the nets are

generated using the Walsh code. The Walsh code for

an interconnect with N nets is generated by its binary

representation as a number. An activating input

vector and the corresponding single-term function for

a LUT for a configuration are derived from a set of

activating inputs. The following block diagram

describes about the activating input assignment,

Test Source

CUT

ORA

RESEARCH ARTICLE OPEN ACCESS

Lekashri S. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.45-48

www.ijera.com 46|P a g e

Figure 2: An Input Assignment

III. CONFIGURATION GENERATION

ALGORITTHM
The process of assigning activating inputs

and test vectors in the configurations for the nets

starts by extracting the interconnect features of a

specific circuit mapped to an FGPA (in this case, this

is given by the Vertex 4) from the Native Generic

Database (NGD) of the design. The NGD is

converted to a text file and then the nets are sorted

based on the number of connected LUTs. A greedy

criterion for selecting the activating inputs and test

vectors is used as follows: The first activating input is

assigned to a net that is connected to the largest

number of LUTs, followed by assigning the second

and third activating inputs to the other nets in a

descending order. However, during each activating

input assignment, it must be ensured that no two (or

more) nets connected to a LUT are driven by the

same activating input. In the case of two nets

connected to the same LUT having the same

activating input, one of the activating inputs is

assigned to the next available activating input to

resolve the conflict. The pseudo code for the above

process as given in the induction method of Tahoori

[3] is utilized for propagating the sensitized faults to

the primary output, thus accomplishing observability

in detection.

At completion of the algorithm, the

activating inputs to the LUTs are found and hence,

the corresponding test configurations can be

determined.

IV. PROPOSED METHOD
Optimization of test patterns for testing

SRAM using genetic algorithm is been proposed. The

novelty of this comprehensive method is that it

connects an activating input to multiple nets, thus

generating a compact set of activating test vectors and

requiring a reduced numbers of configurations. The

faults covered in this technique include all possible

stuck-at, open, and pair wise bridging faults.

However, to allow a fair comparison with existing

works logic simulation is therefore employed also in

this paper; therefore, all possible stuck-at, open, and

pair wise bridging faults are considered and detected

by the proposed approach. So, for detecting the faults

at the primary outputs, the induction fault detection

method is adopted. The proposed method optimizes

the test pattern in execution .This is lower than a

previous comprehensive method. The proposed

method has a genetic algorithm execution. Therefore,

the proposed method differs from previous

approaches with respect to test pattern. The test

patterns are generated by using Linear feedback shift

register (LFSR).

An LFSR is a shift register with feedbacks

from the last stage and other stages. The outputs of its

flip-flops form the test pattern. Each state of the

LFSR corresponds to one test pattern. The number of

unique test patterns the LFSR can generate depends

on the number and location of the feedbacks as well

as its initial value, which is known as the seed. An

example of an LFSR is shown in Figure 3

Figure 3: LFSR Example

It is initialized with the seed 0001. In the

subsequent clock cycles, a series of test patterns are

produced at the outputs of the flip-flops. This LFSR,

which has n=4 flip-flops, produces a total of 15 (2n -

1) distinct patterns (except 0000) as shown in

Figure.3. The feedback positions are usually

described by a characteristic polynomial. In our

example, feedbacks are made from the first (x) and

the fourth (x4) positions, hence the characteristic

polynomial of the LFSR is p(x) = 1 + x + x4. The

0 0 0 1

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

1 0 1 1

0 1 0 0

1 0 1 1

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

Lekashri S. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.45-48

www.ijera.com 47|P a g e

choice of feedback positions (the choice of the

polynomial) determines the length of the test

sequences generated. Special polynomials known as

primitive polynomials give maximal length sequences

(2n-1). A polynomial p(x) = 1 + x + x4, which is used

in our example, is primitive. It generates a sequence

of 15 distinct test patterns before repetition.

Therefore, when designing an LFSR a good choice of

seed and polynomial is crucial for generating a good

sequence of tests. These test patterns optimized by

using genetic algorithm (GA)

V. GENETIC ALGORITHM
 Genetic algorithm (GA) is an adaptive

heuristic search algorithm based on the mechanism of

natural selection and evaluation. GA is an artificial

intelligence procedure and robust search method.

This technique is efficient for finding combinatorial

optimization problem. The objective of GA is to find

optimal solution to a problem. Genetic algorithm

belongs to the class of evolutionary algorithm which

generates solution to optimization problems using

techniques inspired by natural evolution such as

inheritance, mutation, selection and crossover.

VI. BLOCK DESCRIPTION
Proposed method Hardware Architecture of

GA is shown in fig 4. Here the evolvable hardware is

used. This evolvable hardware can be implemented

by combining hardware architecture of GA with

evolvable computing logic. This paper describes the

implementation of evolvable hardware with the state

machine hardware. The hardware architecture of

genetic algorithm model based on FPGA consists of

two units. They are processing unit and control unit.

Processing unit:

The function of the processing unit includes

initial population generation, fitness evaluation and

genetic operation. There are five hardware modules in

the processing unit. They are generation modules,

selection modules, crossover modules, mutation

modules and random number generation module

(RNG). RNG generates random number for other

modules.

Control unit:

The control unit acts as a control state

machine. The state machine of the control unit can be

used to decide the operating sequence of initial

population generation, population storage, fitness

evaluation, selection, crossover and mutation. It can

automatically send control signal to the processing

unit.

Operation:

The control signal can assure a correct

executing in circles of these modules in the

processing unit, depending on the operating rule

about the sequence of these operations. The control

unit receives the current state signals and generates

the next state. These two units work coordinately to

perform the calculation of GA.

Figure 4: Hardware Architecture of GA

Control state machine:

 The modules of processing unit are

controlled by the control state machine of the control

unit and can work on two states. They are active state

and sleeping state. The figure 5 shows the binary

decision diagram of the control state machine. The

state machine consists of four states. They are idle,

birth, GA, store.

Figure 5: Control State Machine

The test generator starts with a random

population of n individuals, and a (fault) simulator is

used to calculate the fitness of each individual. The

best test vector evolved in any generation is selected

and added to the test set. Then, the fault set is updated

by removing the detected faults by the added vectors.

The GA process repeats itself until no more faults can

be detected

VII. RESULTS AND DISCUSSION
Hence the genetic algorithm used here has

avoided the redundancy and reduced the number of

test patterns by optimization technique. It also

reduced the time constraint with just ten Test

Patterns. Only these optimized ten test patterns are

Lekashri S. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.45-48

www.ijera.com 48|P a g e

used for testing and fault analysis of the circuit. The

simulated output of without fault and with fault are

shown below in fig 6 & fig 7 respectively. Thus the

observed results from the proposed architecture

achieves minimum power in the range of 220-230

mW and the reduced time constraint is about 1.5-2 ns.

Figure 6: Without Fault

Figure 7: With Fault

VIII. CONCLUSION
Thus genetic algorithmic method for

optimizing test pattern for testing of a SRAM that is

been proposed relies on generating minimized test

patterns. This algorithmic-based method detects all

stuck-at, open, and pair wise bridging faults,

optimizes test patterns with minimum time constraint

and less power consumption.

REFERENCES
[1] M. J. O'Dare and T. Arslan,”Generating Test

Patterns For Vlsi Circuits Using A Genetic

Algorithm” ,U.K.

[2] Lalit A. Patel, Sarman K. Hadia,“Transistor

Level Fault Finding in VLSI Circuits using

Genetic Algorithm “

[3] M.B. Tahoori, “Application-Dependent

Testing of FPGAs,” IEEE Trans. Very Large

Scale Integration Systems, vol. 14, no. 9, pp.

1024- 1033, Sept. 2006.

[4] M.B. Tahoori, “Application-Dependent

Testing of FPGA Interconnects,” Proc. 18
th

IEEE Int’l Symp. Defect and Fault

Tolerance in VLSI Systems, pp. 409-416,

Nov. 2003.

[5] M.B. Tahoori, “Application-Dependent

Diagnosis of FPGAs,” Proc. IEEE Int’l Test

Conf., pp. 645-654, Oct. 2004.

[6] A. Doumar and H. Ito, “Testing the Logic

Cells and Interconnect Resources for

FPGAs,” Proc. Eighth Asian Test Symp., pp.

369-374, Nov. 1999.

[7] Y. Yu, J. Xu, W.K. Huang, and F.

Lombardi, “A Diagnosis Method for

Interconnects in SRAM Based FPGAs,”

Proc. Seventh Asian Test Symp., pp. 278-

282, Dec. 1998.

[8] W.K. Huang, X.T. Chen, and F. Lombardi,

“On the Diagnosis of Programmable

Interconnect System: Theory and

Application,” Proc. 14th VLSl Test Symp.,

pp. 204-209, Apr. 1996.

[9] F. Lombardi, D. Ashen, X. Chen, and W.K.

Huang, “Diagnosing Programmable

Interconnect System for FPGAs,” Proc.

Fourth ACM Int’l Symp. Field-

Programmable Gate Arrays, pp. 100-106,

1996.

[10] Feng Liang, Luwen Zhang, Shaochong Lei,

Guohe Zhang, Kaile Gao an

